Abstract—In this paper, we present an instrumentation amplifier for high speed electrical impedance tomography. The instrumentation amplifier includes a fast acting automatic gain control, which allows it to process a wide dynamic range of input signals with low power consumption and without sacrificing the frame rate of the tomography system. The instrumentation amplifier was designed in a 3.3 V, 180 nm CMOS process. Simulation results show that it has a dynamic range of 85 dB over a 10 MHz bandwidth, with a total power consumption of 3.1 mW.

I. INTRODUCTION

Patients with chronic heart disease are at risk of suffering an episode of acute decompensated heart failure [1]. If the patient’s cardiac hemodynamic status could be remotely monitored, then this would permit early intervention, potentially avoiding hospitalization and other adverse outcomes [2]. One promising technology for enabling such cardiac monitoring at home is electrical impedance tomography (EIT) [3], [4].

EIT is attractive because it is low cost, non-ionizing and amenable to miniaturization [5], [6]. The challenge, however, is that high quality EIT imaging requires an analog front end that operates from 100 Hz to 10 MHz, has a dynamic range of over 80 dB and provides the maximum possible frame rate for any given interrogation frequency [7]. Power consumption is an additional concern; for a wearable, 128 electrode EIT system, each channel of the analog front end should consume on the order of 1 mW of power.

In this paper, we present an instrumentation amplifier that is part of an EIT system-on-chip that we are developing for a remote cardiac monitoring application. Our instrumentation amplifier (i-amp) uses a fast acting automatic gain control (AGC) loop to achieve high dynamic range with low power consumption, while providing close to the maximum theoretical frame rate at any interrogation frequency from 100 Hz to 10 MHz.

II. SYSTEM OVERVIEW

Figure 1 shows a simplified block diagram of one channel of the analog front end of our EIT system. The current source injects approximately one period of a sinusoidal signal into the tissue, via a pair of electrodes and DC blocking capacitors (for patient safety). The resulting boundary voltages are measured via another set of electrodes and capacitors and amplified by an i-amp. The gain of the i-amp is variable and is controlled by an AGC unit. Since each voltage reading lasts for about one period, the AGC unit must output a valid control signal within a fraction of this time, or else the system’s frame rate will fall. The output of the i-amp is fed to a Σ-Δ ADC, and the digitized signal undergoes an I/Q analysis, from which are extracted its amplitude and phase. The amplitude and phase

Fig. 1: Simplified analog front end signal chain for electrical impedance tomography.

readings from different current injection patterns are used to reconstruct a tomography-like impedance map of the tissue under test.

III. INSTRUMENTATION AMPLIFIER

The instrumentation amplifier is based on the universal current conveyor instrumentation amplifier, which provides a high common mode rejection ratio and is also amenable to programmable gain [8]. As shown in Fig. 2a, it consists of a transconductance stage and a transimpedance stage of variable gain.

The transconductance stage is a pair of flipped voltage followers with voltage gain boosting [9] and a variable resistor, R_1. Input transistors M_1 and M_9 serve as source voltage followers, with their drain voltages held fixed by the gain boosting stages (see Fig. 2b). Holding the drain voltages of transistors M_1 and M_9 fixed minimizes the effect of channel length modulation, and also keeps the transistors in saturation even during large input swings. The input AC signal is buffered from the gates of M_1 and M_9 to their sources, causing a voltage drop to appear across resistor R_1. The resulting input-dependent current through R_1 is sourced/sinked by transistors M_2 and M_{10}, and is thus mirrored to transistors M_8 and M_{16} in the transimpedance stage. Transistors M_8 and M_{16} force the mirrored current to flow through R_2, and the voltage across R_2 is the i-amp output. Assuming 1:1 current mirroring, the differential voltage gain of the i-amp is given as R_2/R_1. Different gain settings can be programmed by switching in
Fig. 2: (a) Circuit diagram of the instrumentation amplifier core. The resistance values of R_1 and R_2 depend on the output code of the amplitude detector. (b) Simplified small-signal half circuit of i-amp transconductance stage. A_v represents the common source amplifier formed by transistors M_6 and M_7; along with the M_3 common source amplifier, A_v pins the drain of M_1 to ac ground.

different ratios of R_1 and R_2. The speed, power consumption and noise of the i-amp depend on the absolute values of R_1 and R_2.

The speed of the i-amp is determined by the dominant pole that is due to the output node. The resistance at this node is approximately $R_2/2$, which can be expected to have a much smaller value than that of the output cascode transistors. The dominant pole is therefore approximately equal to $2/(R_2C_L)$, where C_L is the output load capacitance. In our system, the load capacitance will be dominated by the input of an ADC driver, and is on the order of 125 fF.

![Fig. 3: Half circuit of the i-amp transconductance stage used for noise analysis.](image)

The input stage of the i-amp produces the majority of the circuit noise. Similar to the approach described in [10], the schematic of Fig. 3 is the equivalent half circuit of the i-amp’s input stage that we used for calculating the input referred voltage noise power spectral density (PSD). It is given as

$$V_{IN}^2 = V_{M_3}^2 + V_{M_1}^2 + V_{M_5}^2 \frac{g_{m_5}}{g_{m_1}} \left(g_{m_1} R_1 + 2 \right)^2 + \left(V_{M_3}^2 \frac{g_{m_3}}{g_{m_1}} + V_{M_4}^2 \frac{g_{m_4}}{g_{m_1}} \right) g_{m_2} (r_{o3} || r_{o4})^2 \frac{R_3^2}{2}$$

where V_{M_3} and g_{m_3} are the voltage noise PSD and small signal transconductance of transistor M_3, respectively. Also, V_{R_1} is the voltage noise PSD of resistor R_1. The noise is minimized by ensuring that the input transistors have large transconductances relative to the current source transistors, and that the value of R_1 is as low as possible. However, for a given input amplitude, smaller values of R_1 generate larger currents through it, which must be supported by M_2 and M_{10} having larger quiescent currents. We have found that a choice of 10 kΩ $\geq R_1 \geq V_{Input}/(200 \mu A)$, where V_{Input} is the peak-to-peak input signal amplitude, produces a good balance between noise performance and current consumption.

Fig. 4: Block diagram of fast automatic gain control unit.

$$\frac{V_m^2}{2} g_{m_2}^2 g_{m_3}^2 (r_{o6} \parallel r_{o7})^2 g_{m_2} (r_{o3} \parallel r_{o4})^2 \frac{R_3^2}{2} + \frac{V_m^2}{2} g_{m_2}^2 g_{m_3}^2 (r_{o6} \parallel r_{o7})^2 g_{m_2} (r_{o3} \parallel r_{o4})^2 \frac{R_3^2}{2} + V_{M_2}^2 \frac{g_{m_2}}{g_{m_1}} \frac{R_3^2}{2}$$

(1)

where V_{M_k} and g_{m_k} are the voltage noise PSD and small signal transconductance of transistor M_k, respectively. Also, V_{R_1} is the voltage noise PSD of resistor R_1. The noise is minimized by ensuring that the input transistors have large transconductances relative to the current source transistors, and that the value of R_1 is as low as possible. However, for a given input amplitude, smaller values of R_1 generate larger currents through it, which must be supported by M_2 and M_{10} having larger quiescent currents. We have found that a choice of 10 kΩ $\geq R_1 \geq V_{Input}/(200 \mu A)$, where V_{Input} is the peak-to-peak input signal amplitude, produces a good balance between noise performance and current consumption.

IV. FAST AUTOMATIC GAIN CONTROL

To maintain the frame-rate of the system, the correct gain setting must be determined within a fraction of a period of the input signal. Envelope detection is not a suitable solution, because it relies on a low pass filter with a slow transient response. Directly comparing the level of the signal to a set threshold is also unsuitable, because there is no a priori knowledge about the signal’s phase. The approach we take...
is to perform a fast amplitude detection [11], which can be calculated via the expression

\[A^2 = x^2 + \dot{x}^2/\omega^2, \]

(2)

where \(x = A \sin(\omega t) \) is the input signal.

Figure 4 shows a block level implementation of Eqn. (2). The high pass filter, implemented as a first order OTA-C filter, produces the derivative term, \(\dot{x} \). Changing the bias current of the OTA programs the break frequency of the high pass. The break frequency is programmed to be 100 times the frequency of the input signal; a lower break frequency would deplete the differentiating operation of the filter, while a higher break frequency would excessively amplify high frequency noise relative to the input signal. With the chosen break frequency, the high pass filter attenuates the signal by approximately 100.

We restore the amplitude of the high-passed signal with the gain block, \(G \), which is implemented as an OTA-resistive load amplifier [12].

The squaring and summing operation in Eqn. (2) is implemented using two pairs of flipped source followers, as shown in Fig. 5. Given the low accuracy required of the amplitude detector, the squaring circuit can be operated either in above- or subthreshold saturation. However, if we assume an above threshold, square law characteristic, then, ignoring the body effect, the drain currents of transistors \(M_{2,4,16,18} \) in Fig. 5 are

\[I_{2,4} = K(V_{cm} + v_x + V_s - V_T)^2 \]
\[I_{16,18} = K(V_{cm} + v_y + V_s - V_T)^2, \]

(3)

where \(V_{cm} \) and \(V_s \) are the transistor gate and source DC voltages, respectively, while \(v_x \) and \(v_y \) represent the \(x \) and \(\dot{x}/\omega \) signals, respectively, from Eqn. (2). Also, \(V_T \) is the threshold voltage. The currents of Eqn. (3) are summed onto the drain of transistor \(M_7 \) in Fig. 5; the resulting drain current is a sum of the \(i_x^2 \) and \(i_y^2 \) terms as desired, plus a constant offset. This current is input to two current-mode comparators, which are based on the track and hold latch described in [13]. The 2 bit output of the comparator pair is used to control the gain setting of the instrumentation amplifier.

V. RESULTS

We designed the adaptive gain instrumentation amplifier in a 3.3 V, 180 nm CMOS process. We used foundry-provided test data and models in simulations, to verify that the circuit would work as desired when fabricated.

The magnitude frequency response plots in Fig. 6 show that the gain of the instrumentation amplifier is selectable at 0.5, 19 and 38 dB. For each of these settings, the amplifier maintains its gain over a bandwidth of 30 MHz or more. The current consumption of the i-amp core is 945 \(\mu \)A, while the current consumption of the fast AGC is 25 \(\mu \)A. With a 3.3 V power supply, this gives a total power consumption of 3.1 mW.

Figure 7 shows the fast AGC in operation. It has an attack time that is 3% of the 1 MHz period. The attack time takes a similar fraction of the period for lower frequency inputs, but it rises to 30% of the period for a 10 MHz signal. In addition to the fast attack time, the AGC is insensitive to the phase of the input signal, as confirmed by the results shown in Fig. 8. The i-amp exhibits input offset due to threshold voltage
mismatch between its input transistors (M_1 and M_0 of Fig. 2a), which results in harmonic distortion, as shown in Fig. 9. The total harmonic distortion of the i-amp is between 0.66% and 1.7%, depending on the input signal’s amplitude and frequency. Another implication of input offset is a non-zero common mode gain; with careful layout, we can achieve a common mode rejection ratio (CMRR) of over 120 dB. In the extremely unlikely scenario that the input offset equals 3 times the standard deviation in threshold voltage mismatch, Fig. 10 shows that the CMRR ranges from 63 to 75 dB.

Figure 9 also shows the i-amp’s output referred noise power spectral density (PSD) for different gain settings. Integrating the PSD from 100 Hz to 20 MHz, the maximum achievable SNR is 71 dB, for an input amplitude of 2 V_{pp}. Due to the AGC, the dynamic range is extended to 85 dB.

VI. Conclusion

We have presented an instrumentation amplifier for the voltage readout of an EIT system that can process inputs up to an amplitude of 2 V_{pp}, and over a frequency range of 100 Hz to 10 MHz. The instrumentation amplifier uses a fast AGC scheme to achieve a maximum SNR of 71 dB and a dynamic range of 85 dB while consuming 3.1 mW of power.

ACKNOWLEDGMENT

This material is based upon work supported by the National Science Foundation, under Grant No. 1112753.

REFERENCES

