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I INTRODUCTION

The most recent financial crisis has drawn renewed attention to exogenous variation in monetary

policy and, in particular, the possibility that a central bank may exploit agents’ forward-looking

expectations to facilitate the escape from severely depressed macroeconomic conditions induced by

the zero lower bound on the nominal interest rate, the standard tool for the conduct of conventional

monetary policy. This approach to monetary policy has been termed ‘forward guidance’; see Camp-

bell et al (2012) for a detailed discussion.1 It comprises of monetary policy announcements that

future levels of the nominal interest rate will remain low even after the effect of adverse macroeco-

nomic shocks has dissipated. Anticipation of these expansionary conditions stimulates the current

state of the macroeconomy, as agents incorporate this future outcome into their forward-looking

expectations. However, policy announcements by the Federal Open Market Committee (FOMC)

had become an essential component of monetary policy-making in the United States even before

the onset of the zero lower bound on the nominal interest rates. Farka (2011) provides a detailed

discussion of the evolution of FOMC statements since 1994 where what she calls ”forward-looking”

statements appear. Since then the Fed has attempted to improve their communication strategy

regarding their future economic outlook, intended path of policy, and had provided the rationale

behind their policy decisions. It has been standard in the recent “news shocks” literature to model

monetary policy announcements as anticipated deviations from an estimated policy reaction func-

tion.

Interest in the role of anticipated future exogenous shocks in general pre-dates the Great Re-

cession; see Gilchrist and Leahy (2002) for a seminal contribution that is generally credited with

launching the literature on the technological news shocks. The present paper builds on the recent

literature that studies the effect of different types of news shocks by comparing the results from two

different real-time forecast datasets: the real-time Survey of Professional Forecasters data and the

Federal Reserve Greenbook forecasts, both from the Federal Reserve Bank of Philadelphia.2 The

1For a recent evaluation of the performance of forward guidance under the zero lower bound on the nominal
interest rate, see Keen et al. (2017). Data limitations prevent our extending the empirical analysis below into the
zero-lower-bound conditions.

2Brissimis and Magginas (2017) briefly discuss the role of alternative forecasts in a New Keynesian DSGE model
similar to the one employed in this paper. However, the only focus on the role of difference in forecast estimates
in the monetary policy reaction function, as opposed to how these differences affect all of the model’s endogenous
variables.
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use of the real-time data in estimation of DSGE models is relatively new, with the majority of the

empirical work in this vein carried out using ex post data. We find that the demand news shocks

play roughly the same role in both datasets. However, the role of monetary and cost-push news

appears to be considerably larger in the GB data than SPF, with the results being particularly

strong for the former set of shocks. The Fed, therefore, appears to have better information about

the future outcomes not driven by the currently observable surprise shocks, which have been the

standard drivers of endogenous variables’ movements in the New Keynesian DSGE models.

More specifically, we follow the work of Milani and Treadwell (2012) by introducing anticipated

components to the model’s stochastic shocks. Best and Kapinos (2016) build on that approach and

show that the models with anticipated monetary news alone tend to fit the ex post data the best,

suggesting the importance of forward guidance. Milani and Rajbhandari (2014) propose a way for

identifying anticipated shocks by using real-time forecasts for several variables in the context of

the Smets and Wouters (2007) model using the SPF data. Hirose and Kurozumi (2012) identify

news shocks in a small scale New Keynesian model using also SPF data. Fuhrer (2017) finds that

SPF data serve well as expectations proxies in the standard DSGE model, and that they aid with

the identification of key parameters. We believe that our paper is the first attempt to evaluate

the differences in the perceptions of the future macroeconomic conditions by the private sector

and the Federal Reserve. In effect, we assume that both the private sector and the central bank

assume that the structure of the economy is the same in terms of the underlying model, given by

the workhorse New Keynesian model that has been extensively employed in the literature. They

estimate it using different information sets, resulting in different parameter estimates and, more

importantly for our purposes, different standard deviations of exogenous shocks, including news

shocks about disturbances to the future values of endogenous variables not explicitly captured by

the model. Therefore, differences in the estimation of the effect of news shocks on the economy

capture the differences in how the private sector and the central bank perceive future events, or

news, to affect the model’s endogenous variables. The differences in perception result in different

forecasts of future values for these variables.

Our main empirical finding adds to the extensive literature on the asymmetric information pos-

sessed by the Fed and the private sector. Faust and Wright (2009) and Gamber and Smith (2009)

among others demonstrate the forecasting superiority of the Greenbook forecasts. For example,
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Romer and Romer (2002) found that optimal forecasts would put no weight on commercial forecasts

when provided with Fed’s forecasts. The informational advantage comes from the additional re-

sources that the Fed dedicates to forecasting, finding valuable information beyond what is included

in commercial forecasts. The Fed’s informational advantage also provides an explanation of why

long-term interest rates rise in tandem with an exogenous shift to tighter policy rates. Tighter

policy signals that the Fed has unfavorable information about inflation and market participants

respond by revising their inflation expectations upward. Romer and Romer (2002) also perform

rationality tests and find that the null hypothesis of rationality is never rejected at the conventional

significance levels. Additionally, the Fed’s forecasts appear to be more accurate than commercial

forecasts due to their lower mean squared error. Using a larger data set, El-Shagi et al (2014)

provide evidence supporting the Romers’ results. In particular, the Fed made better inflation pre-

dictions than private forecasters when conditioning forecast performance on uncertainties in the

economic environment. They attribute Greenbook forecasts superiority to the Fed’s knowledge of

the future path of interest rates. Rossi and Sekhposyan (2016) apply forecast rationality tests that

are robust to instabilities to Greenbook and survey-based data and confirm that the Fed has addi-

tional information about the current and future states of the economy with respect to the private

sector. Therefore, the superior properties of the Greenbook forecasts with respect to the private

sector make them attractive for our purposes, since we are interested in identifying the sources of

differences in the Fed’s and private sector’s perceptions of the future macroeconomic activity in

real time. In effect, our results provide a DSGE explanation for the this strand of the forecasting

literature: the Federal Reserve attributes larger variation in endogenous variables to the exogenous

future information than the private sector.

This paper contribution to the extant literature is twofold. First, previous studies have doc-

umented the Fed’s forecasting superiority mostly in the single-equation reduced-form type of ap-

proach. From a methodological perspective we aim to provide a structural explanation of the dis-

crepancies in forecasts in the general equilibrium context. We are able to disentangle that the Fed’s

perceived contribution of monetary policy announcements as well as cost-push news play a larger

role on macroeconomic conditions than what private agents perceive. This is important because

the ability of policy announcements to affect the economy depend on their perceived private sector

effectiveness. Second, we find large differences in the degree of perception of future macroeconomic
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activity implied by the private sector and Fed forecasts. Our central finding that the cost-push and

monetary news shocks play a more important role in the GB rather than SPF dataset suggests that

the Fed’s forecasting superiority across all measures of macroeconomic activity largely stems from

having a more nuanced and accurate understanding of the future disturbances to the trajectories

of the measures of inflation and interest rates.

The rest of the paper is organized as follows. Section II summarizes a fairly standard New

Keynesian model of monetary policy augmented with news shocks. Section III lays out the Bayesian

estimation strategy that we employ to estimate alternative specifications of our baseline model and

the priors for estimated parameters. Section IV discusses the data and motivates the use of real-

time forecasts for modeling forward-looking expectations in DSGE models. Section V discusses

estimation results. Finally, Section VI concludes.

II MODEL SUMMARY

In this section, we briefly outline the standard New Keynesian model augmented with news shocks

previously used by Milani and Treadwell (2012) and Best and Kapinos (2016). The model has

three sectors whose behavior is characterized by corresponding structural equations the describe

the evolution of endogenous variables’ departures from the steady state. First, households maxi-

mize a discounted stream of utility from leisure and quasi-growth in consumption and are able to

store wealth through bonds in the complete-markets setting. The first-order conditions for their

optimization problem yield the so-called IS schedule:

yt =
b

(1 + b)
yt−1 +

1

(1 + b)
Etyt+1 −

1− b
σ(1 + b)

(rt − Etπt+1) + εyt , (1)

where b is the degree of habit formation in consumption, which is used to reflect the observed

persistence in real macroeconomic activity, σ is the inverse coefficient of relative risk aversion to

changes in quasi-growth of consumption, yt is output gap whose difference from consumption is

swept into the exogenous demand shock εyt , πt is inflation, and rt is the nominal interest rate.

As is standard in this strand of the literature, we assume monopolistically competitive firms

whose decision to set optimal prices is subject to the Calvo (1983) pricing friction. The evolution
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of inflation that can be derived in this setting is described by the so-called Phillips curve:

πt =
ωp

1 + βωp
πt−1 +

β

1 + βωp
Etπt+1 +

κp
1 + βωp

[
ηyt +

σ

1− b
(yt − byt−1)

]
+ εpt (2)

where β is the exogenous discount factor, ωp reflects the share of firms who index prices to last

period’s inflation when they are not able to set them optimally, κp =
(1−θpβ)(1−θp)

θp
and θp is the

fraction of firms who are not able to set prices optimally in any given time period, η is the Frisch

elasticity of labor supply, and εpt is the exogenous cost-push shock.

Finally, following the seminal work of Clarida et al (2000), the central bank is assumed to set

the nominal interest using the following forward-looking version of the Taylor rule:

rt = ρrt−1 + (1− ρ)(γpEtπt+k + γyEtyt+k) + εrt . (3)

The Fed’s response to macroeconomic variables led by several time period’s highlights the forward-

looking nature of monetary policy and emphasizes the importance of forecasting future macroeco-

nomic conditions.3 To capture alternative assumptions on the inflation and output forecast horizons

employed in the past literature, we consider two possibilities with respect to this timing and set

k = 1 or k = 4 for robustness.

In addition to the relatively standard modeling the endogenous evolution of the agents’ forward-

looking behavior via the current expectations of future conditions described by the equations above,

we augment the model with the exogenous disturbances that can be anticipated several time periods

in advance. More specifically, we assume that innovations in our three structural equations evolve

according to the following processes:

εyt = ρyε
y
t−1 + vyt +

H∑
h=1

νy,ht−h, (4)

εpt = ρpε
p
t−1 + vpt +

H∑
h=1

νp,ht−h, (5)

3See Orphanides (2001) for the seminal evaluation of the role of real-time forecasts in monetary policy rules. Best
and Kapinos (2016) evaluate alternative modes of specifying forward-looking monetary policy rules and find that this
functional form provides a good fit with the ex post data.
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and

εrt = ρrε
r
t−1 + vrt +

H∑
h=1

νr,ht−h, (6)

where vyt ∼ iid(0, σ2y), v
p
t ∼ iid(0, σ2p), and vrt ∼ iid(0, σ2r ) represent unanticipated innovations.

Our specification allows structural shocks to be serially correlated with respective autocorrelation

coefficients ρy, ρp, and ρr. The anticipated shock component of our model is given by νy,ht−h, νp,ht−h,

and νr,ht−h, where h is the anticipation horizon. Insofar as the standard deviations of these news

shocks are positive, they may provide additional sources of variation in the model’s endogenous

variables through the terms modeling agents’ forward-looking behavior.

We consider a model with 1- to 4-quarter-ahead anticipated shocks to the Euler equation, the

NKPC, and the Taylor Rule in the spirit of Schmitt-Grohe and Uribe (2012) and Milani and

Treadwell (2012); the choice of anticipation horizon is motivated by the strategy of identifying

news shocks with forecast data. We exploit real-time data sets on expectations from the Survey of

Professional Forecasters and the Green Book, which correspond to forecasts for the four quarters

after the current quarter at t + h, h = [1, . . . , 4] of inflation, output growth, and the short term

interest rate. This specification allows us to study the effect of a relatively short run (up to 1

year) anticipation horizon of the shocks on the dynamics of the model. The anticipated component

of exogenous shocks may be interpreted as information about the future state of economy that is

revealed to the agents ahead of time. Therefore, νy,ht−h contain information about future realizations

of IS determinants, such as shifts in fiscal policy; νp,ht−h reveal news about the future evolution of

firms’ marginal cost; and νr,ht−h may be interpreted as announcements regarding the future conduct

of monetary policy. Milani and Rajbhandari (2014) were first to use the SPF real-time forecasts

to identify news shocks in the context of a DSGE model. However, the present paper is first to

evaluate their relative importance in alternative real-time datasets, comparing the their role for the

private sector (SPF) and the Federal Reserve (Green Book).

III BAYESIAN ESTIMATION STRATEGY

This section outlines the mapping from the observed variables that included concurrent obser-

6



vations and forecasts of future macroeconomic conditions to the theoretical constructs described

in the previous section. We first discuss the model’s state-space representation and the estimation

algorithm and then provide an overview of the literature that is relevant for motivating the choice

of the priors for estimated parameters.

III.1 State-space Representation

The model can be written in state space form in the following way:

Γ0αt = Γ1αt−1 + Ψwt + ΠΦt, (7)

with αt=[yt, πt, rt, Etyt+1, ..., Etyt+4, Etπt+1, ..., Etπt+4, Etrt+1, ..., Etrt+4, ε
y
t , ε

p
t , ε

r
t , ν

r,h
t , νr,ht−1, ...

νr,ht−h+1, ν
y,h
t , νy,ht−1, ..., ν

y,h
t−h+1, ν

p,h
t , νp,ht−1, ..., ν

p,h
t−h+1]

′ is the state vector for horizons h = [1, . . . , 4] in

the Taylor rule, Euler Equation, and NKPC. The vector wt = [0, ..., 0, vrt , v
y
t , v

p
t , ν

r,h
t , νy,ht , νp,ht , ..., 0]′

collects all innovations. Lastly, the vector Φt includes all expectational errors i.e., Φp
t = πt−Et−1πt.

Therefore, the state space representation has been expanded considerably because we are including

the NKPC, Euler equation, and Taylor rule innovations containing news shocks with 1- to 4-quarter-

ahead anticipation horizons. The set of model equations forming a linear rational expectations

model was solved using the estimation procedure of Sims (2002). The observation equations that

relate the model-implied variables to the observable variables are as follows:



∆yobst

πobs
t

robst

Et∆y
obs
t+1

...

Et∆y
obs
t+4

Etπ
obs
t+1

...

Etπ
obs
t+4

Etr
obs
t+1

...

Etr
obs
t+4



=



γ

π̄

r̄

γ1

...

γ4

π̄1

...

π̄4

r̄1

...

r̄4



+H



[yt − yt−1]

πt

rt

Et[yt+1 − yt]

...

Et[yt+4 − yt+3]

Etπt+1

...

Etπt+4

Etrt+1

...

Etrt+4

α̃



+ Ω



o∆y
t

o
Et∆yt+1

t

o
Et∆yt+2

t

o
Et∆yt+3

t

o
Et∆yt+4

t .


(8)

7



The previous observation equation can be summarized as:

ξt = γ̄ +Hαt + Ωot. (9)

The vectors ξt and γ̄ contain the observable variables and their steady state values fixed to their

sample means, respectively. The matrix H selects the observable variables from the state vector

α and α̃ gathers the remaining state variables. We include a measurement error for the output

growth and expected output future growth variables to account for potential differences between

these observables and their model definitions.

We estimate the set of structural parameters, autocorrelation coefficients, standard deviations of

anticipated and unanticipated innovations, and measurement errors using likelihood-based Bayesian

techniques; see An and Schorfheide (2007) for a comprehensive methodological overview. For our

baseline specification, structural parameters represent a 29× 1 vector Θ defined as:

Θ = [b, θp, ωp, ρ, γp, γy, ρr, ρy, ρp, σr, σy, σp, σr1, σr2, σr3, σr4, σy1, σy2, σy3, σy4, . . .

. . . , σp1, σp2, σp3, σp4, σoy, σoy+1, σoy+2, σoy+3, σoy+4]
′ (10)

As is common in the literature, some parameters were fixed during the estimation strategy. Fol-

lowing Milani and Treadwell (2012), Castelnuovo (2012), Schmitt-Grohe and Uribe (2012), we set

the household’s discount factor β, to 0.99, the Frisch labor supply elasticity η to 2, and the in-

tertemporal elasticity of substitution σ to 1. A prior distribution is assigned to the parameters of

the model and is represented by p(Θ). The Kalman filter is used to evaluate the likelihood function

given by p(ξT |Θ), where ξT = [ξ1, ..., ξT ]. Lastly, the posterior distribution is obtained by updating

prior beliefs through the Bayes’ rule, taking into consideration the data reflected in the likelihood.

We generate draws from the posterior distribution through the Metropolis-Hastings algorithm.4

The specific simulation method that we use is random walk Metropolis Hastings for which we ran

500,000 iterations, discarding the initial 20% as burn-in. In addition, we ran several other chains

with different initial values obtaining similar results.

4For details on the specification of the Metropolis-Hastings algorithm refer to Chib and Greenberg (1995).
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III.2 Priors

Priors for the estimated parameters are summarized in Table 1. Their values for the degree of

price inflation indexation, interest smoothing parameter, and Calvo price stickiness follow a Beta

distribution with means of 0.7, 0.7, and 0.5, respectively, and standard deviation of 0.17, 0.17, and

0.16 similar to Milani and Treadwell (2012). The prior for the degree of habit persistence has a

mean of 0.5 and a standard deviation of 0.16. Although slightly lower than the value used in other

studies, this prior mean is consistent with previously estimated posterior means for this parameter,

as in, Smets and Wouters (2007). Importantly, this shape of the prior distribution prevents posterior

peaks from being trapped at the upper corner of the respective estimation intervals set between 0

and 1. The autoregressive coefficients in consumption Euler equation, the NKPC, and the Taylor

rule take Normal distributions centered at 0.5. The magnitude for the response to inflation and

the output gap in the Taylor rule also take Normal distributions centered at 1.5, and 0.5, with the

latter value slightly higher than in Milani and Treadwell (2012) and Castelnuovo (2012).

We follow Schmitt-Grohe and Uribe (2012) and Milani and Rajbhandari (2012) in our treatment

of the priors for the standard deviations of anticipated and unanticipated shocks, and measurement

error. The priors for the standard deviations of the unanticipated and anticipated innovations follow

a Gamma distribution. Although the inverse Gamma distributions are commonly used as priors

for standard deviations, as is well known, their use may push the estimates of shocks’ standard

deviations away from zero. Our use of the Gamma distribution, on the other hand, assigns a

positive probability that the standard deviations of anticipated innovations could take a value of

zero, thus capturing the possibility that news shocks play an insignificant role in the dynamics of

the model. Second, we assume that 75% of the variance of observed disturbances is driven by the

unanticipated component. More specifically, if σq is the standard deviation of the observed shock

εq where q = [y, p, z], the variance of its concurrent component σc,q is given by:

σ2c,q = wσ2q

and its news components by:

σ2n,q = (1− w)σ2q ,
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where the weight of the unanticipated component is set to w = 0.75. Variances of individual news

shocks at different horizons h can be constructed using:

σ2h,q =
1

N
σ2n,q,

where N is the number of news shocks at different horizons. These assumptions on the priors give

limited scope to the anticipated shocks. Hence our priors need to be overwhelmed by the data to

find a significant role for them.

IV DATA

We estimate the model described in the previous section using the real-time vintages—as opposed

to the final revisions used in the standard ex post estimation—of real output growth, inflation

(measured as the percentage change in the output deflator), and the short-term nominal interest

rate. The two datasets for current expectations of future variables; the sources of the latter are

the the Federal Reserve’s Green Book and the mean estimates from the Survey of Professional

Forecasters to proxy the private sector’s expectations. Our sample is limited by the availability of

the Greenbook data, hence in all of our estimation the sample period is 1987Q3 through 2007Q4.

We use the Real Time Data Set for Macroeconomists (RTDSM) available from Federal Reserve

Bank of Philadelphia to construct the concurrent values of the model’s observables.5 The real-

time data correspond to the first available vintage for each observation seasonally adjusted. The

output growth series (∆yobst ) was calculated taking the log first difference of the first vintage of

real GDP using the series with acronym ROUTPUT.6 Inflation (πobst ) was calculated using the

log first difference of the Price Index for GNP/GDP with acronym P. In this case, the short-term

nominal interest rate (robst ) used as observable is the 3-Month Treasury Bill Rate, percentage points,

not seasonally adjusted, quarterly average from the Survey of Professional Forecasters (SPF). It

corresponds to the series with the acronym TBILL2 which represent the forecast for the current

5The SPF forecasts are currently provided by the Philadelphia Fed and were previously collected by the American
Statistical Association (ASA) and the National Bureau of Economic Research (NBER). The GB and RTDSM data
are also available from the Philadelphia Fed website.

6In the collection of the Real Time Data Set for Macroeconomics, the output variable changes in 1992 from GNP
tp GDP. Therefore, we are using for our estimation the GDP growth rate before 1992 and the GDP growth rate
thereafter.

10



quarter, defined as the quarter in which the survey is conducted.7 The concurrent real time data

set remains the same across both specifications (SPF and GB), making the forecasts the only source

of difference due to our focus on the identification of news shocks.

In addition to the observable concurrent variables, we use data on expectations of future macroe-

conomic outcomes of the private sector and the Federal Reserve for two reasons: first, to identify

the policymakers’ response to explicit forecasts of inflation and output in a monetary policy feed-

back rule; and second, to help in the identification of the news shocks to monetary policy, the

IS equation, and the Phillips curve. The first estimation resorts to the following expectations se-

ries (the mean response across forecasters) obtained from the SPF: The forecasts for real GDP

growth, Et∆y
obs
t+h,for h = [1, . . . , 4] were obtained using the forecasts for the Real GDP series

with acronyms RGDP3-RGDP6. The forecasts for inflation, Etπ
obs
t+h for h = [1, . . . , 4] were com-

puted from the forecasts for the Price index for the GDP series with acronyms PGDP3-PGDP6.

While the forecasts for the short-term interest rate Etr
obs
t+h for h = [1, . . . , 4] correspond to the

3-Month Treasury Bill Rate with acronyms TBILL3-TBILL6. The second estimation uses data

from the Greenbook forecasts and financial assumptions produced by the Federal Reserve Board

of Governors for the Federal Open Market Committee (FOMC) meetings and maintained by the

Federal Reserve Bank of Philadelphia for inflation Etπ
obs
t+h, the output growth Et∆y

obs
t+h, and the

federal funds rate Etr
obs
t+h. The series used were quarter-over-quarter growth in real GDP (acronym

gRGDP) and the price index for GDP (acronym gPGDP), both series transformed to quarterly

rates for quarters t + h, h = [1, . . . , 4]. The real-time Federal Funds Rate projections used come

from the Greenbook Financial Assumptions that are estimates used by the Board of Governors of

the Fed used in the construction of Greenbook forecasts.

The forecast of inflation, output growth, and interest rates using the SPF and GB forecasts

follow similar but by no means identical patterns.8 Inflation forecasts, represented in Figure 1,

were persistently overestimated during the late 1980s and 1990s. In fact, Romer and Romer (1989)

provide narrative evidence that suggests the Fed took preemptive measures to control inflation

during this time, probably as a results of its overestimation of inflation at all horizons. This

pattern changed in the late 1990s to early 2000s when the forecast errors became persistently

7See Milani and Rajbhandari (2014) for the details of merging the RTDSM and SPF datasets and related timing
assumptions.

8Similar discussion of the differences between the two datasets in terms of forecast errors is available upon request.
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negative. Inflation forecasts appear less overestimated in the GB data in the 1980s and 1990s but

were more evident in the late 1990s and 2000s, highlighting tangible differences with the SPF data.

Output growth forecasts at different horizons are plotted in Figure 2. While the forecast bias

becomes more evident at longer horizons here as well, their dynamic evolution is quite different.

Output growth forecasts are underestimated in the late 1980s and 1990s, except for a short spell in

the early 1990, which was probably due to forecasters inability to predict turning points in macroe-

conomic variable dynamics. In fact, Sinclair et al (2010) conclude that although the Fed misses

downturns and upward movements, when the economy changes direction, the Fed incorporates this

new information quickly and revises its forecasts in the right direction. In the 2000s, we observe a

consistent overestimation of output growth forecasts. In the former period, forecast errors follow a

similar pattern using GB and SPF data, however, in the latter period, the Fed seems more opti-

mistic producing larger forecasts errors indicating a larger overestimate of future output growth at

every horizon.

Finally, interest rate forecasts are displayed in Figure 3.9 We note that during the recessions of

the early 1990s and 2000s, and during the Great Recession, forecasts of short term interest rates

exceeded their ex post realizations, while we observe their underestimation during expansions.

These differences highlight the variation in the perception of the Fed’s forward guidance discussed

in Section V.

In all cases, as the horizon increases, forecasts become more diffuse, as their precision decreases

and errors increase. We believe that this property is important and provides motivation on why

news at different anticipation horizons can have various magnitudes and have different effects in the

relevant macroeconomic variables. In addition, we observe consistent biases in inflation and output

growth forecasts that differ depending on the source of the forecasts. We next turn to investigating

these differences in the context of the DSGE model described in Section II.

V RESULTS

Our main task is to disentangle the relative importance of the different types of anticipated news

shocks for the model’s agents and the Fed. We first discuss the differences in parameter estimates

9Since the ex post values of the federal funds rate and the 3-month T-bill rate are virtually identical, we only use
the latter in these graphs for visual clarity.
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obtained from the SPF and GB datasets, paying particularly close attention to the distributions of

estimated standard deviations of these shocks. We then focus on the differences in transmission of

these shocks across the two datasets using forecast error variance decompositions.

V.1 Parameter Estimates

Table 2 presents the parameter estimates for the case of k = 1 whereas Table 3 does the same

for k = 4. The estimates of the standard deviations of different types of news shocks suggest

that they are important sources of exogenous variation in endogenous variables. In all cases, their

magnitudes are comparable to those of the standard deviations of surprise shocks and in some

cases are larger. The data fit the model best when the Taylor rule is explicitly responding to

4-quarter-ahead forecasts of inflation and output growth than to only 1-quarter-ahead forecasts.

The marginal likelihood is higher when k = 4 in the Taylor rule for the model with SPF data,

however we perceive the opposite in the Greenbook model meaning that the model with k = 1 in

the Taylor better fits the data. Our estimates also suggest that the Fed is forward-looking and its

mean policy response to one year ahead inflation is slightly higher than its 1-period-ahead response

(γp = 2.231 for k = 4 vs. γp = 1.906). It is possible that one indication of the Fed’s improved

inflation-stabilizing credibility is that agents perceptions about the Fed’s policy responses follow

the same pattern; γp = 2.388 at k = 4 while γp = 1.862 at k = 1. In fact, agents perceive the

highest monetary policy response to inflation at k = 4 across all specifications. Moreover, there is

some indication that agents perceive a higher mean response to output growth response than the

Fed.

There is a clear pattern that emerges when considering monetary policy, demand, and cost-push

news shocks. Figures 4 through 6 present priors and posterior distributions for the monetary policy,

demand, and cost-push news shocks that are identified using explicit expectations data from the

GB and from the SPF. At h = 1, the posteriors overlap for news identified with both data sets

on expectations, however this is not the case as the anticipation horizon increases. We have seen

that the forecast biases increase with the anticipation horizon in the GB and SPF datasets. Fur-

thermore, we find that the posterior probability interval for demand news shocks have considerable

overlap illustrated in Figure 4. However, the GB monetary news have indisputably higher standard

deviations with posterior probability intervals that do not overlap, as depicted in Figure 5. Thus,

13



the Fed estimates the standard deviations of monetary news shocks that the recent literature has

ascribed to forward guidance are stronger than what private sector agents perceive. With regard to

cost-push news, identification of news using SPF data are perceived to have a considerably stronger

standard deviation at h = 3, than cost-push news estimated using the GB data, as in Figure 6.

Hence the role of anticipated news shocks, as measured by their estimated standard deviations,

seems to vary substantially with the real-time dataset. We next investigate differences in the shock

transmission process to endogenous variables.

V.2 Variance Decomposition

Figures 7 through 9 present the variance decomposition of interest rates, inflation, and the output

gap by surprise and news shocks using the SPF and GB estimates for k = 1 and k = 4 in the policy

rule. We find that the news shocks play a predominant role at explaining the three variables, as

roughly 80% of the variance can be attributed to them after 20 periods. Therefore, including the

expectations data from the SPF and GB not only helps with the identification of the news shocks,

but it also it alters the contribution of news shocks at explaining the aforementioned variables.

Moreover, it suggest that the mix of monetary, demand, and cost-push news shocks differs between

estimates obtained with agents’ and Fed’s expectations. Figure 7, shows the contribution of the

surprise and news shocks to output growth. In this graph, demand news shocks play a predominant

role at explaining the variance of output growth for private agents while this role is much lower for

the Fed. Figure 8 illustrates that the monetary policy news shocks, or policy announcements, play a

larger role at explaining the variance of interest rates under the GB estimates compared to the SPF

estimates. This could be interpreted as the Fed’s belief that forward guidance has a stronger effect

on interest rates than what private agents think. It also shows that inflationary news shocks are

more important contributors to the interest rates for the Fed than for the private agents while the

latter perceives that the contribution of demand shocks is more important than the former. Finally,

Figure 9 presents the involvement of the news and surprise shocks in the variance of inflation. It

appears that cost-push (> 20%) and monetary shocks (15% for k = 1) contribute more to the

variance of inflation for the Fed than for the private sector (< 10% and < 10%, respectively).

We can conclude that for the estimates that arise from using Greenbook data, the perceived

contribution of monetary policy news or forward guidance to the variance of inflation, the output

14



growth, and the interest rate is higher than under the estimates using SPF. This finding reiterates

the information asymmetry between the Fed and the private sector. Furthermore, it suggests that

the ability of policy announcements to affect the economy depend on their perceived effectiveness by

the private sector, which may be smaller than the Fed’s. These results suggest that the Fed might

be more optimistic than the private sector regarding their usefulness of policy announcements to

stabilize the economy against fluctuations.

VI CONCLUSION

In this paper, we have provided a structural explanation for the superiority of the Federal Reserve

forecasts of inflation and real activity that has been well-documented in the literature on forecasting

these variables using reduced-form methods. We find that the estimates of the standard New Key-

nesian DSGE model augmented with news shocks attribute a stronger role to these disturbances,

particularly to the cost-push and monetary news. These finding suggests that the Fed’s under-

standing of the future path of inflation and interest rates is likely responsible for its forecasting

superiority over the private sector. In particular, monetary policy announcements play a larger role

at the determination of the future path of inflation and interest rates by the Fed compared to the

private sector.
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A Tables

Table 1: Parameter Description and Priors—Gamma for Errors and Medium Exogenous Persistence

Parameters Description Dist. Mean SD

b Degree of habit persistence B 0.50 0.16
θp Calvo probability of price stickiness B 0.50 0.16
ωp Degree of price indexation B 0.70 0.17
ρ Interest-smoothing parameter B 0.70 0.17
γp Magnitude of response to inflation target N 1.50 0.25
γy Magnitude of response to output gap target N 0.50 0.12
ρy Exogenous persistence of demand shock N 0.50 0.23
ρr Exogenous persistence of monetary shock N 0.50 0.15
ρp Exogenous persistence of cost-push shock N 0.50 0.15
ξ Degree of forward-looking monetary policy (Calvo T.R.) B 0.60 0.12
α Degree of forward-looking monetary policy U 0.20 0.29
σy Standard deviation of demand shock, concurrent only Γ 0.34 0.30
σr Standard deviation of monetary shock, concurrent only Γ 0.34 0.30
σp Standard deviation of cost-push shock, concurrent only Γ 0.34 0.30
σy Standard deviation of demand shock, concurrent, with news Γ 0.30 0.30
σr Standard deviation of monetary shock, concurrent, with news Γ 0.30 0.30
σp Standard deviation of cost-push shock, concurrent, with news Γ 0.30 0.30
σy,n Standard deviation of demand shock, news only* Γ 0.10 0.15
σr,n Standard deviation of monetary shock, news only* Γ 0.10 0.15
σp,n Standard deviation of cost-push shock, news only* Γ 0.10 0.15
σoy(+h) Measurement error for output growth and its forecasts IG 0.25 0.10

Note: Asterisk (*) refers to the structure of news shocks with h = 1− 4. The symbols for the prior
distributions stand for B =Beta, N =Normal, Γ =Gamma, and IG =Inverse Gamma distributions.
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B Figures

Figure 1:
Forecasts of inflation at horizons h=[0,. . . ,4] vs actual inflation. Survey of professional forecasts in
black solid line; Greenbook forecasts in red dashed line; ex post realization in thick blue line.
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Figure 2:
Forecasts of output growth at horizons h=[0,. . . ,4] vs actual output growth. Survey of professional
forecasts in black solid line; Greenbook forecasts in red dashed line; ex post realization in thick
blue line.
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Figure 3:
Forecasts of the short-term interest rate at horizons h=[0,. . . ,4] vs actual rates. Survey of profes-
sional forecasts in black solid line; Greenbook forecasts in red dashed line; ex post realization in
thick blue line.
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Figure 4: Distributions of estimated standard deviations of demand news shocks: Grey dashed
line—prior; blue solid line—Greenbook; red punctuated line—SPF
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Figure 5: Distributions of estimated standard deviations of monetary news shocks: Grey dashed
line—prior; blue solid line—Greenbook; red punctuated line—SPF
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Figure 6: Distributions of estimated standard deviations of cost-push news shocks: Grey dashed
line—prior; blue solid line—Greenbook; red punctuated line—SPF
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Figure 7:
Forecast error variance decomposition of output growth: GB vs SPF data. Surprises: blue shade—
cost-push shocks; cross-hatched—demand shocks; red shade—monetary shocks. News: darkest
shade—h = 1; lightest shade—h = 4.
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Figure 8:
Forecast error variance decomposition of the nominal interest rate: GB vs SPF data. Surprises:
blue shade—cost-push shocks; cross-hatched—demand shocks; red shade—monetary shocks. News:
darkest shade—h = 1; lightest shade—h = 4.
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Figure 9:
Forecast error variance decomposition of inflation: GB vs SPF data. Surprises: blue shade—
cost-push shocks; cross-hatched—demand shocks; red shade—monetary shocks. News: darkest
shade—h = 1; lightest shade—h = 4.
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C SPF and Greenbook Expectations Specification

In the previous sections we used real-time data series from the Philadelphia Fed Real-Time Data set to

match current observations; however in one case, all expectations are matched to the SPF, and in the other

case, all expectations are matched to the Greenbook forecasts. An obvious extension should be to use SFF

expectations to match expectations included in the Euler Equation and the New Keynesian Phillips Curve

(NKPC)—as those represent expectations of households and firms—and Greenbook expectations for the

terms in the Taylor rule—as those represent central bank’s forecasts. Therefore, the two forecasts should be

mixed in the same model and this is the approach that we take in the current section.

The model is encompassed by equations (1)-(6). The expectations included in equations (1) and (2)

that are our IS schedule and NKPC are pinned down by expectational data from the SPF. In an attempt

to capture the central bank’s behavior, equation (3) is identified using data that is generated by the Federal

Reserve. In particular the expectational terms in the Taylor rule Etπt+k
GB and Et∆yt+k

GB for k = 1 are

identified by using one quarter ahead Greenbook forecasts for inflation and output growth, while the current

interest rate used is the Effective Federal Funds Rate obtained from the FRED that is the economic database

from the Federal Reserve Bank of St. Louis.10

In addition, the anticipated shock component of our model is given by νy,ht−h, νp,ht−h, and νr,ht−h, where h is

the anticipation horizon. We consider 1- to 4 quarter-ahead anticipated shocks to the Euler equation (νy,ht−h),

and the NKPC (νp,ht−h), that are identified using expectations data from the Survey of Professional Forecasters

as described in Section 4. However, the monetary policy anticipated shocks (νr,ht−h) resorts to Federal Funds

Rate projections from the Greenbook Financial Assumptions that are used in the construction of Greenbook

forecasts. Therefore, we are adding four additional variables to the space vector (αt) that are the forecast

of inflation Etπt+k
GB and output gap Etδyt+k

GB—which enter the monetary policy reaction function—

and their corresponding expectational error terms νp,1t , and νy,1t with standard deviations σGB
p1 and σGB

y1 .

In addition, the observation equation (8) was modified to include the two new observables variables—GB

forecasts of inflation and output growth—and a measurement error (o
Et∆yt+1

GB

t ) (with standard deviation

σGB
oy+1 ) for the expected future output growth to account for potential discrepancies between this observable

and the model’s definition.

Table 4 presents the posterior parameter estimate results. The main differences with our main specifi-

cation in Tables 2 and 3 is that the degree of price stickiness, θ, increases almost up to its theoretical limit

of 1 and the degree of persistence drops considerably, which suggests that all shocks directly affecting the

10We also estimated a model where the central bank is responding to 4 quarters ahead Greenbook forecasts of
inflation and output growth (k = 4) in the Taylor rule, however this estimation becomes problematic because
dimension of the matrix in the state space representation increases considerably, and multiple determinacy arise.
Therefore, we stick to the (k = 1) estimation which yields manageable matrices and no determinacy issues.
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Phillips curve, both surprises and news, will have marked differently transmission mechanisms in this model.

This intuition is confirmed in the forecast error variance decompositions of Figure 11. It demonstrates that

all variables respond primarily to their own surprises and news, a feature that is likely driven by the fact

that instead of all forecasts being driven by mutually consistent models, this specification mixes forecasted

variables that were obtained using different methodologies. In terms of the monetary policy parameter es-

timates and news shocks, we observe that the response to inflation in the Taylor rule in this specification

where the Greenbook forecasts are only used in the identification of monetary policy aspects of the model,

is lower (γp = 1.317), which may suggest that the Fed’s response to inflation forecast is smaller than what is

perceived by the private agents. In addition, we find evidence supporting our previous results that monetary

policy news shocks identified using GB are across the board higher than SPF estimates, consistent with the

forward guidance strategy followed by the Fed in recent years. Lastly, the supply shocks, identified with SPF

data only, have higher standard deviation at all horizons; unfortunately, the implications of this last finding

is dubious given the transmission mechanism results in the FEVD.
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Table 4: Parameter Estimate Posteriors Combined Expectations model, k = 1

Parameters Greenbook and SPF
Mean Pos. Prob. Int.

b 0.988 [0.986, 0.991]
θp 0.998 [0.996, 0.999]
ωp 0.072 [0.021, 0.158]
ρ 0.948 [0.930, 0.963]
γp 1.317 [1.022, 1.722]
γy 0.411 [0.185, 0.644]
ρr 0.516 [0.435, 0.595]
ρy 0.129 [0.044, 0.222]
ρp 0.065 [0.021, 0.130]
σr 0.066 [0.057, 0.077]
σy 0.120 [0.093, 0.149]
σp 0.233 [0.200, 0.272]
σr1 0.053 [0.046, 0.062]
σr2 0.038 [0.033, 0.045]
σr3 0.035 [0.030, 0.041]
σr4 0.034 [0.029, 0.041]
σy1 0.031 [0.002, 0.057]
σy2 0.032 [0.007, 0.049]
σy3 0.012 [0.001, 0.030]
σy4 0.026 [0.018, 0.034]
σp1 0.104 [0.088, 0.123]
σp2 0.096 [0.081, 0.112]
σp3 0.180 [0.147, 0.217]
σp4 0.173 [0.141, 0.208]
σoy 1.891 [1.685, 2.093]
σoy+1 0.113 [0.089, 0.143]
σoy+2 0.080 [0.062, 0.101]
σoy+3 0.090 [0.073, 0.111]
σoy+4 0.119 [0.101, 0.1.41]
σGBy1 0.086 [0.002, 0.324]

σGBp1 0.052 [0.001, 0.178]

σGBoy+1 0.184 [0.153, 0.220]

Marginal L 298.32
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Figure 10: Distributions of estimated standard deviations of cost-push news shocks: Grey dashed
line—prior; blue solid line—Greenbook; red punctuated line—SPF; green dotted line—combined
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Figure 11: Forecast error variance decompositions: combined GB vs SPF data. Surprises: blue
shade—cost-push shocks; cross-hatched—demand shocks; red shade—monetary shocks. News:
darkest shade—h = 1; lightest shade—h = 4.
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