Continuous monitoring and adaptive control—the internet of things transforms stormwater management

JAMIE R. LEFKOWITZ, P.E., OptiRTC, Inc., Boston, Massachusetts
ALEXA K. SARMANIAN, OptiRTC, Inc., Boston, Massachusetts
MARCUS QUIGLEY, P.E., OptiRTC, Inc., Boston, Massachusetts

ABSTRACT: Both traditional (gray) and green stormwater management practices have almost entirely been designed as passive systems governed by a fixed control structure to achieve a target water quality and/or quantity objective (i.e., treatment volume, attenuation). Passive systems, however, rarely represent optimal solutions. Advances in low-cost, Internet-accessible controller systems and wired and wireless communications have made real-time and dynamic controls of distributed stormwater facilities now viable, cost-effective options for new construction as well as retrofits. The physical setup of continuous monitoring and adaptive control (CMAC) stormwater systems includes three primary components: a water level sensor to provide data on the facility’s current state, an actuated valve to control its hydraulics (typically outflow), and an Internet connection most often provided in remote locations by cellular data. CMAC facilities have been deployed throughout the United States to enhance underperforming facilities and optimize designs for multiple objectives, such as flood protection, water quality treatment, water reuse and channel protection.

KEYWORDS: Stormwater management, adaptive control, design optimization, green infrastructure

INTRODUCTION

All infrastructure must be designed to a level of service. Stormwater management facilities are typically designed to achieve some combination of stated objectives. The most decisive objective, for example, typically concerns the lifetime of the infrastructure and its cost, a calculated design storm frequency and its regulatory or environmental function. Designing facilities to meet stated objectives certainly contributes to the successful management of stormwater, yet optimized design necessitates that the objectives are quantifiably well informed. The reality in water infrastructure is that the level of service has become a moving target. Stormwater and flood control systems are often designed to treat up to or protect from a statistical storm event (e.g., the 1-inch [2.5-centimeter] event or the event with a 100-year recurrence interval). However, these targets assume stationarity in natural systems. Climate variability and anthropogenic changes have compromised this assumption as it relates to water resources (Milly et al. 2008). Recent studies have observed an increasing historical trend in both average precipitation and extreme events in New England. There is also consensus among researchers projecting an increase in temperature, a decrease in snowpack and an increase in precipitation volume of extreme events in the region (USACE 2015). Future water resource designs must be adaptable to the changing climate, the changing built environment and the changing response from the natural environment.

In addition to designing for an uncertain climate, stormwater managers must design systems at the expense of competing objectives and with limited information about the actual site conditions. Distributed stormwater management and treatment systems are difficult to monitor, and as a result we have limited data to inform the best possible designs. Current performance standards and designs are based on specifications and standards that are not precise on a local or individual facility level. Ideally, stormwater facilities could be designed around the local watershed with adaptive, long-lasting performance standards. Intelligent design would also empower a range of functionality to achieve what are typically considered competing objectives, such as water-quality treatment and flood protection. In the past it has been difficult and costly, if not impossible, to maximize multiple objectives with static design and limited insight. Advances in environmental sensor and communications technology now allow us to monitor and control stormwater facility performance and to adapt static designs to meet new objectives and optimize achievement of existing ones. The technology that enables these improvements is known as the Internet of Things (IoT). IoT is the network of physical objects embedded with electronics, software, sensors and network connectivity, which enables these objects to collect and exchange data. IoT allows objects to be sensed and controlled remotely across network infrastructure, creating opportunities for more direct integration of the physical world into computer-based systems. In the context of stormwater management, IoT applies directly to the continuous monitoring and adaptive control (CMAC) of stormwater control facilities. Continuous, remote monitoring allows stormwater managers to monitor for facility-level performance data, which leads to informed maintenance and regulatory confirmation. Adaptive controls can act on the data collected by continuous monitoring and

Figure 1. Nonpoint sources have surpassed point sources as the largest cause of river and stream impairments in the United States

![Figure 1. Nonpoint sources have surpassed point sources as the largest cause of river and stream impairments in the United States](image)

Figure 2. A schematic of CMAC for green and gray infrastructure: field-deployed sensors and Internet connectivity provide the ability to verify and improve the performance of distributed stormwater infrastructure.
Intelligently adjust facility hydraulics to increase performance over a wider hydraulic range of conditions while optimizing for multiple objectives. CMAC technology is not only feasible, it is used by stormwater managers across the United States. It has been successfully deployed to meet a range of stated stormwater management objectives, including: 1) reducing discharge to a combined sewer system while maximizing water available for reuse in a rainwater harvesting system, 2) increasing water-quality treatment while maintaining flood protection of a wet pond, and 3) irrigating a green roof efficiently while providing proof for green infrastructure design. In each case, CMAC consistently and predictably achieves stated objectives while simultaneously providing the data needed to inform intelligent management decisions and planning. By incorporating CMAC into the design of stormwater facilities, the industry can significantly improve asset performance.

BACKGROUND

As with other water management and treatment infrastructure, the performance of distributed stormwater management facilities depends on a variety of site-specific factors. Design assumptions and manuals can go only so far in describing the behavior of any facility. Comprehensive efforts to quantify the performance of stormwater management strategies exist, including the International BMP Database and references developed by individual states and regulatory entities. While these references are well-supported by literature, such as the New Hampshire Stormwater Manual, site-references are well-supported by literature, such as the forecast or actual rainfall, and thus water level, changes. Also essential in these systems is the integration of cloud-based design and function. The hardware needed is an actuated valve, a water-level sensor and control unit, and communication with the cloud-based platform that automatically monitors the weather forecast and calculates expected runoff volume from future storms. The remote software communicates directly with hydraulic controls and sensors at the stormwater facility, making decisions about how to prepare for incoming storms and how to manage stormwater after events. This active water management solution is particularly powerful in urban areas where space is not available for more traditional stormwater management. The flexibility of intelligent, predictive controls is also evident in its adaptability. Managers can monitor, evaluate and adjust the logic to optimize performance over time, a cost-efficient solution in an industry often tied to costly construction projects and design modification. Introducing real-time monitoring and control of facilities—be it gravity or green infrastructure—allows performance to be directly quantified as a benefit to improved design and function.

METHODOLOGY

These new stormwater management systems require integrated hardware and cloud-based software to function. The hardware needed is an actuated valve, a water-level sensor and control unit, and communication with the cloud-based platform that automatically monitors the weather forecast and calculates expected runoff volume from future storms. The remote software communicates directly with hydraulic controls and sensors at the stormwater facility, making decisions about how to prepare for incoming storms and how to manage stormwater after events. This active water management solution is particularly powerful in urban areas where space is not available for more traditional stormwater management. The flexibility of intelligent, predictive controls is also evident in its adaptability. Managers can monitor, evaluate and adjust the logic to optimize performance over time, a cost-efficient solution in an industry often tied to costly construction projects and design modification. Introducing real-time monitoring and control of facilities—be it gravity or green infrastructure—allows performance to be directly quantified as a benefit to improved design and function.

METODOLOGY

These new stormwater management systems require integrated hardware and cloud-based software to function. The hardware needed is an actuated valve, a water-level sensor and control unit, and communication with the cloud-based platform that automatically monitors the weather forecast and calculates expected runoff volume from future storms. The remote software communicates directly with hydraulic controls and sensors at the stormwater facility, making decisions about how to prepare for incoming storms and how to manage stormwater after events. This active water management solution is particularly powerful in urban areas where space is not available for more traditional stormwater management. The flexibility of intelligent, predictive controls is also evident in its adaptability. Managers can monitor, evaluate and adjust the logic to optimize performance over time, a cost-efficient solution in an industry often tied to costly construction projects and design modification. Introducing real-time monitoring and control of facilities—be it gravity or green infrastructure—allows performance to be directly quantified as a benefit to improved design and function.

DATA ACCESS

Data access often takes the form of a web-based dashboard that allows a user to view, explore and download data. In addition, these dashboards can deliver remote, manual control of these systems. The data presented on a web-dashboard offer the ability to continuously optimize performance. Other sensors, such as water-quality sensors (total suspended solids, nitrate, pH, temperature, dissolved oxygen, etc.), can be added to monitor water quality impacts and performance of a facility in real-time. Security is paramount for complete vertical integration of these systems. Communication between hardware and the cloud-based platform uses hardware-driven, message-level encryption for robust security without excessive power consumption. Permissions to access data on the web-based interface are granted based on a user’s role, allowing for granular control and transparency around who can view the data and execute real-time control operations. Communications with the web browser are secured with modern versions of industry-standard Transport
Layer Security (TLS). All these measures result in a secure and robust automated control system. The components and methods described above provide a vertically integrated system for intelligently controlling distributed systems under challenging conditions.

CASE STUDIES AND RESULTS

Improve function using CMAC in design
Rainwater harvesting (RWH) systems are used worldwide as an alternative source of water. In the humid regions of the United States these systems often supplement potable water for landscape and lawn irrigation (Debata et al. 2013). Such was the case for an RWH system installed at EPA headquarters in Washington, D.C. Six 1,000-gallon (3,790-liter) water storage tanks (cisterns) collect runoff from approximately 10,000 square feet (930 square meters) of rooftop to irrigate roughly 13,500 square feet (1,254 square meters) of landscaped area (Figure 4). The six tanks were hydraulically connected such that they function as one individual system.

In addition to being a supplemental water source, RWH systems also can provide stormwater management control by decreasing the volume and rate of stormwater leaving a site. The cistern acts as a temporary holding facility for stormwater runoff. When the stored water is used for irrigation or in other ways, part of the tank is emptied, creating storage capacity for runoff to be generated by the next rainfall event. However, if minimal water is extracted from the system, there is no storage room available inside the cistern when it rains, and the runoff leaves the site unmitigated as overflow. As with most systems installed for irrigation in humid regions, usage of the collected rainwater at the EPA site was minimal. Over the span of one year, less than 5 gallons (19 liters) of stored rainwater was extracted from the system for irrigation. Thus, before CMAC was deployed, the system provided mitigation for stormwater leaving the site.

The CMAC system was implemented at the EPA site in April 2016 and was fully online and operational by May 1, 2016. As no water was being used for irrigation, the stormwater management benefit achieved by the RWH system relied solely on the CMAC system. Data collected between May 1, 2016, and May 1, 2017, were used to evaluate the performance of the RWH system. Of the 110 storm events that occurred during the one-year period, only 21 (19 percent) resulted in wet weather release (release during a rain event). For the 89 storms that did not result in wet weather release, the volume and peak flow reduction was inherently 100 percent. However, incorporating CMAC still significantly reduced wet weather volume releases and peak flow rates for storms that did result in release during a rain event. Reductions for these storms alone averaged 82 and 86 percent for volume release and peak flow rates, respectively, bringing overall average system reductions to 97 percent for both volume and peak flow rates.

Enhance existing stormwater management
Both green and gray infrastructure systems using static methods can eventually underperform as site conditions and regulations change over time. CMAC retrofits can increase the efficiency and performance of existing systems using compact sensor and outlet control technologies. Two recently deployed CMAC systems, one at a large wet pond and another at a green wet pond, Sligo Creek headwaters, in Washington, D.C. Six 1,000-gallon (3,790-liter) cisterns in the basement of EPA headquarters in Washington, D.C., collect runoff from the building roof to be used for on-site irrigation. Adaptive control of the cisterns has reduced wet weather flow to the combined sewer by 80 percent.

Wet Pond, Sligo Creek headwaters, Montgomery County, Maryland
Sligo Creek is a tributary of the Anacostia River, which is impaired for nutrients, sediments, fecal bacteria, impacts to biological communities and toxins—polybrominated biphenyls (PCBs) and hexa- to hepta-chloro epoxide, trash/debris, and PCBs in fish tissue in tidal waters (MDE and DOEE 2008). Eventually draining to the Chesapeake Bay, this site is part of the 64,000-square-mile (166,000-square-kilometer) watershed subject to EPAs “pollution diet” calling for a 25 percent reduction in nitrogen, a 40 percent reduction in phosphorus and 20 percent reduction in sediment (EPA 2013). A 15-acre-foot (18,500-cubic-meter) wet pond (Figure 5) collects and retains stormwater drainage from 440 acres (188 hectares) at the headwaters of Sligo Creek. The pond provides 24-hour retention of just 3 acres-feet (3,700 cubic meters), falling short of Maryland’s requirement to treat 1 inch (2.5 centimeters) of rainfall runoff from impervious surfaces in the drainage area. A CMAC retrofit, supported by a National Fish and Wildlife Foundation (NFWF) grant, was implemented in November 2015 that installed actuated valves at the outlet structure and a water-level sensor, and connected both remotely to cloud-based software. The software uses real-time forecast information from NOAA to determine the timing and expected volume of incoming storm events. In advance of the storm, the outlet valves are closed such that only Sligo Creek baseflow passes. During and after the storm, the pond retains up to approximately 9 acre-feet (10,000 cubic meters) of runoff volume for a predetermined length of time, currently configured to be 48 hours. After the retention period ends, the software sends a signal to open the valves to release the water downstream. If another storm event is forecasted during the retention period, the software will prepare the pond for the expected incoming volume, thereby maintaining critical flood prevention capacity when it is needed.

Figure 6 shows the results of modeling, illustrating pond behavior with and without CMAC design. The pond without CMAC technology would need...
to be twice as large to achieve similar performance over time. The project continuously monitors temperature, nitrate, total dissolved solids, conductivity, pH and turbidity to evaluate the CMAC retrofit performance over time. Figure 7 shows real-time environmental data streaming to a web-based interface, making it immediately available for viewing, downloading and analysis by project stakeholders.

Green roof, Villanova University, Pennsylvania

Through the Villanova Urban Stormwater Partnership, Villanova University conducts research to understand and optimize BMP performance and promotes innovative designs and technology to the industry. As part of a National Science Foundation (NSF) grant, the university installed a CMAC solution for an existing green roof site. A cistern that collects runoff from a non-green roof is connected to the green roof to use the evapotranspiration capacity of the vegetated roof year-round (Figure 8). The green roof covers 750 square feet (70 square meters) and is used for research as well as reduction in stormwater runoff to the university’s storm drain system. The 500-gallon (1,890-liter) cistern collects runoff from an additional 840 square feet (78 square meters) of non-green roof and has a weather-level sensor, actuated valve and connection to the cloud-based decision software. The software maximizes runoff capture from the non-green roof and optimizes irrigation to the green roof. Between storms the intelligent irrigation logic releases water from the cistern to the green roof based on real-time soil moisture sensor readings. In advance of a storm, the software calculates the timing and expected runoff volume of the event, steps irrigation to the green roof and discharges water from the cistern to the storm drain as needed to make room for the incoming runoff. These automated steps prepare both the green and non-green roofs for maximum runoff capture while reducing potable water demand for irrigation. During an event the green roof performs as designed to capture direct rainfall, and the cistern valve is closed to capture the non-green roof runoff. The researchers can also monitor dozens of sensors on a single web-based interface, shown on Figure 9.

CONCLUSIONS

Advances in sensor technology and Internet connectivity offer an important opportunity for stormwater managers to design smarter, more cost-efficient facilities. Continuous monitoring and verification of performance on an individual facility scale is now possible. Designers and operators of distributed infrastructure can leverage the capabilities of IoT to directly control the hydraulic behavior of facilities based on real-time conditions and local weather forecasts. Moving away from static design assumptions is critical to adapt to the changing climate and nonstationarity in water resources conditions.

Both green and gray stormwater infrastructure can benefit from more intelligent, adaptive design approaches. CMAC installations across the country prove that this technology is viable and cost-effective. Many more projects could be included in this article demonstrate positive performance over time. The small subset presented here shows that:

• Adding CMAC to an undersized rainwater harvesting system has eliminated 80 percent of discharges to a combined sewer during wet weather.
• An underperforming pond retrofitted with CMAC will achieve similar target water-quality treatment objectives as a passive storage facility twice its size.
• Green infrastructure designed only to capture and treat its own direct runoff, such as green roofs, can be retrofitted with CMAC storage to capture and treat uncontrolled runoff from other impervious surfaces without compromising existing performance.

CMAC offers a promising solution to the persistent stormwater issues that regulators, municipalities and private landowners continue to face: water availability, water quality, protection of property and protection of public health and safety.

ABOUT THE AUTHORS

• Ms. Lefkowitz is a professionally registered civil engineer with a focus on water resources. She holds a bachelor’s and master’s degree in engineering from Villanova University. She worked for eight years at CDM Smith on large-scale watershed management and integrated water supply planning studies in New England and around the world, providing computer modeling analysis of these water systems to support decision-making with sound science. She joined OptiRTC, Inc., in 2015 to develop a new and powerful way to manage water, by combining web-based technology with readily available field sensors.
• Ms. Sarmanian manages marketing and communications at Opti. She works to develop clear and consistent communication around critical new technologies in stormwater management. She holds a bachelor of arts in international relations from Boston University.
• Mr. Quigley is the founder and CEO of Opti. He has more than 20 years of experience in solving complex engineering problems as well as leading and managing major projects and organizations. Before founding Opti, he was a principal at Geosyntec Consulting and past member of the board of directors. Mr. Quigley holds a master of science in civil engineering from Oregon State University and a bachelor of science in environmental engineering from Notre Dame.

REFERENCES

(2018) Total Maximum Daily Loads of Nutrients/ Biochemical Oxygen Demand for the Anacostia River Basin

• U.S. Environmental Protection Agency

• U.S. Environmental Protection Agency (USEPA) Office of Water (2009) National Water Quality Reporting Inventory: Report to Congress. EPA 841-B-09-001

• U.S. Environmental Protection Agency (USEPA) (2010) Chesapeake Bay Total Maximum Daily Load for Nitrogen, Phosphorus, and Sediment

ACKNOWLEDGMENTS

• Geosyntec Consultants, Inc.
• Metropolitan Washington Council of Governments
• Montgomery County, Md Department of Environmental Protection
• National Fish and Wildlife Foundation
• National Science Foundation
• U.S. Environmental Protection Agency

• Villanova University Urban Stormwater Partnership
• Water Environment Research Foundation