UTeach CS Unit 1: Computational
Principles Thinking

High-Level vs. Low-Level Languages

Language Hierarchy

A wide range of languages exists, both natural (like English) and artificial (programming languages like Scratch). Ultimately,
language is a tool for communicating an idea. In the case of computing, this communication may be human, machine, or
anywhere in between.

At the high end of that spectrum lie the languages that are best for human communication. These languages are complex and
use a high level of abstraction (a concept we’ll explore in greater depth inUnit 3: Data Representation). They are symbolic and
rely on strings of letters to form words that represent abstract concepts, ideas, actions, and objects. Our brains are optimized for
this form of symbolic expression, so these languages are easy for us to read, write, and understand. Different programming
languages offer different levels of abstraction. Examples can be found below. With all of its abstraction and inconsistent
grammar and usage, natural languages are difficult to use in ways that will allow machines to understand our intent. With
products like Apple’s “Siri” interface or Google’s “OK Google” voice search feature, the technology has made great strides in
recent years, but there’s still a long way to go before machines can truly understand natural languages.

Low-level languages, however, are optimized for machines. Computers are built using highly structured circuitry that responds
to very logical and clear signals. Because low-level languages are much more concrete and straightforward, with limited
vocabulary and very structured syntax, nothing is left to interpretation.

Machine languages are the most basic type of programming language. They represent the actual binary instructions issued to
computer processors and are very difficult for humans to read. Moreover, they may vary from computer to computer! Believe it
or not, in the beginning days of computer programming, all programs were written in binary machine language. Today, this is
very rare.

The table below outlines this language hierarchy. Notice that the natural languages in the first row (e.g., English) are suited only
for humans, and processor-specific languages in the last row (i.e., ones and zeroes, 10000010) are suited only for machines.
The languages in between—high-level programming languages like Scratch, C++, Python—and low-level programming
languages that tell the computer processor what to do (but are still somewhat readable by humans) bridge that gap, allowing
humans and computers to communicate with each other.


http://127.0.0.1:4000/Unit3_DataRepresentation/md/3-0_UNIT_DataRepresentation.md

Language Characteristics Example

Evolved naturally by entire societies through human
communication.
Natural . . .
i ) Potentially ambiguous. “Add 2 and 3 and assign the sum to
(English, Spanish,
Chinese, Hindi, etc.)

R

a variable called *x’.
Easy for humans to read, write, and parse.

Difficult for machines to parse.
Relatively easy for humans to read, write, and parse.

. . . int x = 2 + 3;
High-level Programming Guaranteed to be unambiguous.

(Java, C++, Python,

BASIC, Scratch, etc.) Easy for humans to read, write, and parse.

Easy for machines to parse.

A direct translation of machine language using an
abbreviated syntax.

<pre>LD RO 2
) Guaranteed to be unambiguous.
Low-level Programming LDR13

(Assembly) ADD RO R1
Less natural for humans, but still readable to the
ST RO X</pre>

trained eye.
Easy for machines to parse.

Directly related to the hardware circuitry of the specific
processor executing the code.

<pre>10000010
Low-level Programming Guaranteed to be unambiguous. 10010011
(Machine) 11000100
Difficult for humans to read and write. 01001101</pre>

Easy for machines to parse.
The high-level and low-level programming languages in the middle of the table are uniquely well-suited for computer scientists

because they are abstract enough to feel natural and intuitive to humans, but basic and structured enough for machines to
process with the level of precision that’s required to have them do what we want.

High-Level Programming Languages

Over the next few units, you'll get the chance to work with two different high-level programming languages:Scratch and
Processing. Scratch is a visual programming language, allowing you to drag-and-drop blocks to communicate with the computer
without worrying about spelling, punctuation, etc., whereas Processing is a textual programming language.



One of the key features of most high-level programming languages is that, because of the abstraction they employ, people can
program without needing to worry about (or even know about) the specific configuration or design of the computer’s underlying
circuitry. This allows the programmer to focus solely on the task of designing and coding a logical solution to whatever problem
he/she might be working on.

Languages like Scratch and Processing are platform-independent, meaning that the programs you write will run on just about
any modern computer, regardless of the model, version of the operating system (e.g., Windows, Mac OS, Linux, etc.), or maker
of the hardware.

Low-Level Programming Languages

On the other end of the spectrum, low-level languages are entirely dependent on the underlying hardware. The language the
computer uses is specific to the individual processor within the machine. That is, there is a direct correlation between the 1s and
0Os of the binary code and the billions of microscopic, electronic switches embedded within the circuitry of the computer.

Fortunately, most programmers never need to actually work at such a low level or program directly with 1s and 0s. Instead,
software development tools, such as the Scratch and Processing interfaces you will use in upcoming units, automatically
generate the low-level, binary code that the processor requires. They do this by interpreting your high-level, abstract instructions
into lower-level machine code through a process known as compilation, which we’ll explore in the next section.

UTeach Computer Science—http://uteachcs.org © 2018 The University of Texas at
Austin


http://uteachcs.org

	High-Level vs. Low-Level Languages
	Language Hierarchy
	High-Level Programming Languages
	Low-Level Programming Languages


